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Chapter1
Expectations and the
Learning Approach

1.1 Expectations in Macroeconomics

Modern economic theory recognizes that the central difference between eco-
nomics and natural sciences lies in the forward-looking decisions made by eco-
nomic agents. In every segment of macroeconomics expectations play a key
role. In consumption theory the paradigm life-cycle and permanent income ap-
proaches stress the role of expected future incomes. In investment decisions
present-value calculations are conditional on expected future prices and sales.
Asset prices (equity prices, interest rates, and exchange rates) clearly depend on
expected future prices. Many other examples can be given.

Contemporary macroeconomics gives due weight to the role of expecta-
tions. A central aspect is that expectations influence the time path of the econ-
omy, and one might reasonably hypothesize that the time path of the economy
influences expectations. The current standard methodology for modeling ex-
pectations is to assumerational expectations(RE), which is in fact an equi-
librium in this two-sided relationship. Formally, in dynamic stochastic mod-
els, RE is usually defined as the mathematical conditional expectation of the
relevant variables. The expectations are conditioned on all of the informa-
tion available to the decision makers. For reasons that are well known, and
which we will later explain, RE implicitly makes some rather strong assump-
tions.
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Rational expectations modeling has been the latest step in a very long line
of dynamic theories which have emphasized the role of expectations. The ear-
liest references to economic expectations or forecasts date to the ancient Greek
philosophers. In Politics (1259a), Aristotle recounts an anecdote concerning
the pre-Socratic philosopher Thales of Miletus (c. 636–c. 546B.C.). Forecast-
ing one winter that there would be a great olive harvest in the coming year,
Thales placed deposits for the use of all the olive presses in Chios and Mile-
tus. He then made a large amount of money letting out the presses at high rates
when the harvest time arrived.1 Stories illustrating the importance of expecta-
tions in economic decision making can also be found in the Old Testament.
In Genesis 41–47 we are told that Joseph (on behalf of the Pharaoh) took ac-
tions to store grain from years of good harvest in advance of years in which
he forecasted famine. He was then able to sell the stored grains back during
the famine years, eventually trading for livestock when the farmers’ money ran
out.2

Systematic economic theories or analyses in which expectations play a ma-
jor role began as early as Henry Thornton’s treatment of paper credit, published
in 1802, and Émile Cheysson’s 1887 formulation of a framework which had
features of the “cobweb” cycle.3 There is also some discussion of the role
of expectations by the Classical Economists, but while they were interested
in dynamic issues such as capital accumulation and growth, their method of
analysis was essentially static. The economy was thought to be in a station-
ary state which can be seen as a sequence of static equilibria. A part of this
interpretation was the notion of perfect foresight, so that expectations were
equated with actual outcomes. This downplayed the significance of expecta-
tions.

Alfred Marshall extended the classical approach to incorporate the distinc-
tion between the short and the long run. He did not have a full dynamic theory,
but he is credited with the notion of “static expectations” of prices. The first
explicit analysis of stability in the cobweb model was made by Ezekiel (1938).
Hicks (1939) is considered to be the key systematic exposition of the temporary
equilibrium approach, initiated by the Stockholm school, in which expectations

1In giving this story, as well as another about a Sicilian who bought up all the iron from the iron
mines, Aristotle also emphasized the advantage of creating a monopoly.

2The forecasting methods used in these stories provide an interesting contrast with those ana-
lyzed in this book. Thales is said to have relied on his skill in the stars, and Joseph’s forecasts were
based on the divine interpretation of dreams.

3This is pointed out in Schumpeter (1954, pp. 720 and 842, respectively). Hebert (1973) dis-
cusses Cheysson’s formulation. The bibliographical references are Cheysson (1887) and Thornton
(1939).
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of future prices influence demands and supplies in a general equilibrium con-
text.4 Finally, Muth (1961) was the first to formulate explicitly the notion of
rational expectations and did so in the context of the cobweb model.5

In macroeconomic contexts the importance of the state of long-term expec-
tations of prospective yields for investment and asset prices was emphasized by
Keynes in his General Theory.6 Keynes emphasized the central role of expec-
tations for the determination of investment, output, and employment. However,
he often stressed the subjective basis for the state of confidence and did not
provide an explicit model of how expectations are formed.7 In the 1950s and
1960s expectations were introduced into almost every area of macroeconomics,
including consumption, investment, money demand, and inflation. Typically, ex-
pectations were mechanically incorporated in macroeconomic modeling using
adaptive expectations or related lag schemes. Rational expectations then made
the decisive appearance in macroeconomics in the papers of Lucas (1972) and
Sargent (1973).8

We will now illustrate some of these ways of modeling expectations with
the aid of two well-known models. The first one is the cobweb model, though
it may be noted that a version of the Lucas (1973) macroeconomic model is
formally identical to it. The second is the well-known Cagan model of inflation
(see Cagan, 1956). Some other models can be put in the same form, in particular
versions of the present-value model of asset pricing.

These two examples are chosen for their familiarity and simplicity. This
book will analyze a large number of macroeconomic models, including linear
as well as nonlinear expectations models and univariate as well as multivariate
models. Recent developments in modeling expectations have gone beyond ratio-
nal expectations in specifying learning mechanisms which describe the evolu-
tion of expectation rules over time. The aim of this book is to develop systemat-
ically this new view of expectations formation and its implications for macroe-
conomic theory.

4Lindahl (1939) is perhaps the clearest discussion of the approach of the Stockholm school.
Hicks (1965) has a discussion of the methods of dynamic analysis in the context of capital accumu-
lation and growth. However, Hicks does not consider rational expectations.

5Sargent (1993) cites Hurwicz (1946) for the first use of the term “rational expectations.”
6See Keynes (1936, Chapter 12).
7Some passages, particularly in Keynes (1937), suggest that attempting to forecast very distant

future events can almost overwhelm rational calculation. For a forceful presentation of this view, see
Loasby (1976, Chapter 9).

8Most of the early literature on rational expectations is collected in the volumes Lucas and
Sargent (1981) and Lucas (1981).
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1.2 Two Examples

1.2.1 The Cobweb Model

Consider a single competitive market in which there is a time lag in production.
Demand is assumed to depend negatively on the prevailing market price

dt =mI −mppt + v1t ,

while supply depends positively on the expected price

st = rI + rppet + v2t ,

wheremp , rp > 0 andmI and rI denote the intercepts. We have introduced
shocks to both demand and supply.v1t andv2t are unobserved white noise ran-
dom variables. The interpretation of the supply function is that there is a one-
period production lag, so that supply decisions for periodt must be based on
information available at timet − 1. We will typically make the representative
agent assumption that all agents have the same expectation, but at some points
of the book we explicitly take up the issue of heterogeneous expectations. In
the preceding equationpet can be interpreted as the average expectation across
firms.

We assume that markets clear, so thatst = dt . The reduced form for this
model is

pt =µ+ αpet + ηt , (1.1)

whereµ = (mI − rI )/mp and α = −rp/mp. Note thatα < 0. ηt = (v1t −
v2t )/mp so that we can writeηt ∼ iid(0, σ2

η ). Equation (1.1) is an example of a
temporary equilibrium relationship in which the current price depends on price
expectations.

The well-known Lucas (1973) aggregate supply model can be put in the
same form. Suppose that aggregate output is given by

qt = q̄ + π
(
pt − pet

)+ ζt ,
whereπ > 0, while aggregate demand is given by the quantity theory equation

mt + vt = pt + qt ,
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wherevt is a velocity shock. Here all variables are in logarithmic form. Finally,
assume that money supply is random around a constant mean

mt = m̄+ ut .
Hereut , vt , andζt are white noise shocks. The reduced form for this model is

pt = (1+ π)−1(m̄− q̄)+π(1+ π)−1pet + (1+ π)−1(ut + vt − ζt ).
This equation is precisely of the same form as equation (1.1) withα = π(1+
π)−1 andηt = (1+ π)−1(ut + vt − ζt ). Note that in this example 0< α < 1.

Our formulation of the cobweb model has been made very simple for il-
lustrative purposes. It can be readily generalized, e.g., to incorporate observable
exogenous variables. This will be done in later chapters.

1.2.2 The Cagan Model

In a simple version of the Cagan model of inflation, the demand for money
depends linearly on expected inflation,

mt −pt =−ψ
(
pet+1− pt

)
, ψ > 0,

wheremt is the log of the money supply at timet , pt is the log of the price level
at timet , andpet+1 denotes the expectation ofpt+1 formed in timet . We assume
thatmt is iid with a constant mean. Solving forpt , we get

pt = αpet+1+ βmt, (1.2)

whereα =ψ(1+ψ)−1 andβ = (1+ψ)−1.
The basic model of asset pricing under risk neutrality takes the same form.

Under suitable assumptions all assets earn the expected rate of return 1+ r,
wherer > 0 is the real net interest rate, assumed constant. If an asset pays
dividend dt at the beginning of periodt , then its pricept at t is given by
pt = (1+ r)−1pet+1+ dt .9 This is clearly of the same form as equation (1.2).

1.3 Classical Models of Expectation Formation

The reduced forms (1.1) and (1.2) of the preceding examples clearly illustrate
the central role of expectations. Indeed, both of them show how the current

9See, e.g., Blanchard and Fischer (1989, pp. 215–216).
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market-clearing price depends on expected prices. These reduced forms thus
describe a temporary equilibrium which is conditioned by the expectations. De-
velopments since the Stockholm School, Keynes, and Hicks can be seen as dif-
ferent theories of expectations formation, i.e., how to close the model so that it
constitutes a fully specified dynamic theory. We now briefly describe some of
the most widely used schemes with the aid of the examples.

Naive or static expectationswere widely used in the early literature. In the
context of the cobweb model they take the form of

pet = pt−1.

Once this is substituted into equation (1.1), one obtainspt = µ+ αpt−1 + ηt ,
which is a stochastic process known as an AR(1) process. In the early literature
there were no random shocks, yielding a simple difference equationpt = µ+
αpt−1. This immediately led to the question whether the generated sequence of
prices converged to the stationary state over time. The convergence condition is,
of course,|α|< 1. Whether this is satisfied depends on the relative slopes of the
demand and supply curves.10 In the stochastic case this condition determines
whether the price converges to a stationary stochastic process.

The origins of theadaptive expectationshypothesis can be traced back to
Irving Fisher (see Fisher, 1930). It was formally introduced in the 1950s by
Cagan (1956), Friedman (1957), and Nerlove (1958). In terms of the price level
the hypothesis takes the form

pet = pet−1+ λ
(
pt−1− pet−1

)
,

and in the context of the cobweb model one obtains the system

pet = (1− λ(1− α))pet−1+ λµ+ ληt−1.

This is again an AR(1) process, now in the expectationspet , which can be ana-
lyzed for stability or stationarity in the usual way.

Note that adaptive expectations can also be written in the form

pet = λ
∞∑
i=0

(1− λ)ipt−1−i ,

which is a distributed lag with exponentially declining weights. Besides adap-
tive expectations, other distributed lag formulations were used in the litera-

10In the Lucas model the condition is automatically satisfied.



Expectations and the Learning Approach 11

ture to allow for extrapolative or regressive elements. Adaptive expectations
played a prominent role in macroeconomics in the 1960s and 1970s. For ex-
ample, inflation expectations were often modeled adaptively in the analysis of
the expectations-augmented Phillips curve.

Therational expectationsrevolution begins with the observations that adap-
tive expectations, or any other fixed-weight distributed lag formula, may provide
poor forecasts in certain contexts and that better forecast rules may be readily
available. The optimal forecast method will in fact depend on the stochastic pro-
cess which is followed by the variable being forecast, and as can be seen from
our examples this implies an interdependency between the forecasting method
and the economic model which must be solved explicitly. On this approach we
write

pet =Et−1pt and pet+1=Etpt+1

for the cobweb example and for the Cagan model, respectively. HereEt−1pt

denotes the mathematical (statistical) expectation ofpt conditional on variables
observable at timet − 1 (including past data) and similarlyEtpt+1 denotes the
expectation ofpt+1 conditional on information at timet .

We emphasize that rational expectations is in fact an equilibrium concept.
The actual stochastic process followed by prices depends on the forecast rules
used by agents, so that the optimal choice of the forecast rule by any agent is
conditional on the choices of others. An RE equilibrium imposes the consis-
tency condition that each agent’s choice is a best response to the choices by
others. In the simplest models we have representative agents and these choices
are identical.

For the cobweb model we now havept = µ+ αEt−1pt + ηt . Taking con-
ditional expectationsEt−1 of both sides yieldsEt−1pt =µ+ αEt−1pt , so that
expectations are given byEt−1pt = (1− α)−1µ and we have

pt = (1− α)−1µ+ ηt .

(This step implicitly imposes the consistency condition described in the previous
paragraph.) This is the unique way to form expectations which are “rational” in
the model (1.1).

Similarly, in the Cagan model we havept = αEtpt+1+ βmt and ifmt is
iid with meanm̄, a rational expectations solution isEtpt+1= (1−α)−1βm̄ and

pt = (1− α)−1αβm̄+ βmt .
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For this model there are in fact other rational expectations solutions, a point we
will temporarily put aside but which we will discuss at length later in the book.

Two related observations should be made. First, under rational expectations
the appropriate way to form expectations depends on the stochastic process fol-
lowed by the exogenous variablesηt or mt. If these are not iid processes, then
the rational expectations will themselves be random variables, and they often
form a complicated stochastic process. Second, it is apparent from our exam-
ples that neither static nor adaptive expectations are in general rational. Static or
adaptive expectations will be “rational” only in certain special cases.

The rational expectations hypothesis became widely used in the 1970s and
1980s and it is now the benchmark paradigm in macroeconomics. In the 1990s,
approaches incorporating learning behavior in expectation formation have been
increasingly studied.

Paralleling the rational expectations modeling, there was further work refin-
ing the temporary equilibrium approach in general equilibrium theory. Much of
this work focused on the existence of a temporary equilibrium for given expec-
tation functions. However, the dynamics of sequences of temporary equilibria
were also studied and this latter work is conceptually connected to the learn-
ing approach analyzed in this book.11 The temporary equilibrium modeling was
primarily developed using nonstochastic models, whereas the approach taken in
this book emphasizes that economies are subject to random shocks.

1.4 Learning: The New View of Expectations

The rational expectations approach presupposes that economic agents have a
great deal of knowledge about the economy. Even in our simple examples, in
which expectations are constant, computing these constants requires the full
knowledge of the structure of the model, the values of the parameters, and that
the random shock is iid.12 In empirical work economists, who postulate rational
expectations, do not themselves know the parameter values and must estimate
them econometrically. It appears more natural to assume that the agents in the
economy face the same limitations on knowledge about the economy. This sug-
gests that a more plausible view of rationality is that the agents act like statisti-

11Many of the key papers on temporary equilibrium are collected in Grandmont (1988). A recent
paper in this tradition, focusing on learning in a nonstochastic context, is Grandmont (1998).

12The strong assumptions required in the rational expectations hypothesis were widely discussed
in the late 1970s and early 1980s; see, e.g., Blume, Bray, and Easley (1982), Frydman and Phelps
(1983), and the references therein. Arrow (1986) has a good discussion of these issues.
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cians or econometricians when doing the forecasting about the future state of the
economy. This insight is the starting point of the adaptive learning approach to
modeling expectations formation. This viewpoint introduces a specific form of
“bounded rationality” to macroeconomics as discussed in Sargent (1993, Chap-
ter 2).

More precisely, this viewpoint is called adaptive learning, since agents ad-
just their forecast rule as new data becomes available over time. There are alter-
native approaches to modeling learning, and we will explain their main features
in Chapter 15. However, adaptive learning is the central focus of the book.

Taking this approach immediately raises the question of its relationship to
rational expectations. It turns out that in many cases learning can provide at least
an asymptotic justification for the RE hypothesis. For example, in the cobweb
model with unobserved iid shocks, if agents estimate a constant expected value
by computing the sample mean from past prices, one can show that expecta-
tions will converge over time to the RE value. This property turns out to be quite
general for the cobweb-type models, provided agents use the appropriate econo-
metric functional form. If the model includes exogenous observable variables or
lagged endogenous variables, the agents will need to run regressions in the same
way that an econometrician would.13

Another major advantage of the learning approach arises in connection with
the issue of multiple equilibria. We have briefly alluded to the possibility that
under the RE hypothesis the solution will not always be unique. To see this
we consider a variation of the Cagan modelpt = αEtpt+1+ βmt , where now
money supply is assumed to follow a feedback rulemt = m̄+ ξpt−1+ ut . This
leads to the equation

pt = βm̄+ αEtpt+1+ βξpt−1+ βut .

It can be shown that for many parameter values this equation yields two RE
solutions of the form

pt = k1+ k2pt−1+ k3ut , (1.3)

where theki depend on the original parametersα,β, ξ, m̄. In some cases both
of these solutions are even stochastically stationary.

13Bray (1982) was the first to provide a result showing convergence to rational expectations in
a model in which expectations influence the economy and agents use an econometric procedure
to update their expectations over time. Friedman (1979) and Taylor (1975) considered expectations
which are formed using econometric procedures, but in contexts where expectations do not influence
the economy. The final section in Chapter 2 provides a guide to the literature on learning.
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Figure 1.1.

For rational expectations this is a conundrum. Which solution should we
and the agents choose? In contrast, in the adaptive learning approach it is sup-
posed that agents start with initial estimates of the parameters of a stochastic
process forpt taking the same functional form as equation (1.3) and revise their
estimates, following standard econometric procedures, as new data points are
generated. This provides a fully specified dynamical system. For the case at
hand it can be shown that only one of the RE solutions can emerge in the long
run. Throughout the book the multiplicity issue will recur frequently, and we
will pay full attention to this role of adaptive learning as a selection criterion.14

In nonlinear models this issue of multiplicity of RE solutions has been fre-
quently encountered. Many nonlinear models can be put in the general form

yt = F
(
yet+1

)
,

where random shocks have here been left out for simplicity. (Note that this is
simply a nonlinear generalization of the Cagan model.) Suppose that the graph of
F(·) has the S-shape shown in Figure 1.1. The multiple steady statesȳ = F(ȳ)
occur at the intersection of the graph and the 45-degree line. We will later give
an example in whichy refers to output and the low steady states represent coor-

14Alternative selection criteria have been advanced. The existence of multiple equilibria makes
clear the need to go in some way beyond rational expectations.
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dination failures. Under learning, a number of interesting questions arise. Which
of the steady states are stable under adaptive learning? Are there statistical learn-
ing rules for which there can be rational or nearly rational fluctuations between
the steady states? We will treat these and other issues for nonlinear models, al-
lowing also for random shocks.

Finally, the transition under learning to rational expectations may itself be
of interest. The process of learning adds dynamics which are not present under
strict rationality and they may be of empirical importance. In the cases we just
described, these dynamics disappear asymptotically. However, there are various
situations in which one can expect learning dynamics to remain important over
time. As an example, if the economy undergoes structural shifts from time to
time, then agents will need periodically to relearn the relevant stochastic pro-
cesses. Moreover, if agents know that they are misspecifying a model which
undergoes recurrent shifts, they may allow for this in their learning in a way
which leads to persistent learning dynamics.

1.5 Statistical Approach to Learning

As already discussed, the approach taken in this book views economic agents
as behaving like statisticians or econometricians when they make forecasts of
future prices and other economic variables needed in their decision making. As
an illustration, consider again the cobweb model (1.1).

Assume that agents believe that the stochastic process for the market price
takes the formpt = constant+ noise, i.e., the same functional form as the RE
solution. The sample mean is the standard way for estimating an unknown con-
stant, and in this example the estimate is also the forecast for the price. Thus,
suppose that agents’ expectations are given by

pet =
1

t

t−1∑
i=0

pi.

Combining this with equation (1.1) leads to a fully specified stochastic dynami-
cal system. It can be shown that the system under learning converges to the RE
solution ifα < 1. This result holds, too, for the basic Cagan model (1.2) with iid
shocks.

It is easy to think of generalizations. If the economic model incorporates
exogenous or lagged endogenous variables, it is natural for the agents to estimate
the parameters of the perceived process for the relevant variables by means of
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least squares. As an illustration, suppose that an observable exogenous variable
wt−1 is introduced into the cobweb model, so that equation (1.1) takes the form

pt =µ+ αpet + δwt−1+ ηt . (1.4)

It would now be natural to forecast the price as a linear function of the observable
wt−1. In fact, the unique RE solution is of this form.15 Under learning, agents
would forecast according to

pet = at−1+ bt−1wt−1, (1.5)

whereat−1 andbt−1 are parameter estimates obtained by a least squares regres-
sion ofpt onwt−1 and an intercept.16

This way of modeling expectations formation has two major parts. First, the
economy is taken to be in a temporary equilibrium in which the current state of
the economy depends on expectations. Second, the statistical approach to learn-
ing makes the forecast functions and the estimation of their parameters fully
explicit. A novel feature of this situation is that the expectations and forecast
functions influence future data points. Mathematically, thisself-referentialfea-
ture makes these systems nonstandard. Analyzing their dynamics is not trivial
and requires special techniques. An overview of those techniques is in the next
chapter, and they are presented more formally in later chapters.

1.6 A General Framework

The examples described in the previous sections can be placed in a more gen-
eral framework. As already noted, the approach taken in this book isadaptive
in the sense that expectation rules are revised over time in response to observed
data. We use the phrase “adaptive learning” to contrast the approach with both
“eductive learning” and “rational learning.” In eductive approaches agents en-
gage in a process of reasoning and the learning takes place in logical or notional
time. The central question is whether coordination on an REE (rational expec-
tations equilibrium) can be attained by a mental process of reasoning based on

15The unique REE ispt = ā + b̄wt−1+ ηt , whereā = (1− α)−1µ andb̄= (1− α)−1δ.
16Bray and Savin (1986) and Fourgeaud, Gourieroux, and Pradel (1986) analyzed cobweb and

Cagan models for learning.
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common knowledge assumptions.17 Rational learning takes place in real time,18

but retains the rational expectations equilibrium assumptions, at each point in
time, which we do not want to imposea priori. The adaptive learning approach
instead assumes that agents possess a form of bounded rationality, which may,
however, approach rational expectations over time.

To describe our general framework, letyt be a vector of variables that agents
need to forecast and letyet denote the expectations formed by the agents.yt could
include future values of variables of interest as well as unknown current values.
(If agents are heterogeneous in the sense that they have differing expectations,
then one can treat this by lettingyet (k) denote the expectations of agentsk. One
would then need to examine the evolution ofyet (k) for each agent. For simplicity,
we continue the discussion under the assumption of homogeneous expectations.)
If the optimal actions of agents depend on the second or higher moments as well
as the mean of certain variables, then this can be treated by including powers
of these variables inyt . Similarly, expectations of nonlinear functions of several
variables may also be included as components ofyt . Thus, at this stage our
framework is very general.

Suppose that agents, when they are making their forecastsyet , have obser-
vations on a vector of variablesXt . Xt might include a finite number of lags of
some or all components ofyt , and could also include lagged values ofyet as well
as other exogenous and endogenous observables. The forecastsyet are assumed
to be a function of the observables so that

yet =9(Xt, θt−1),

whereθt−1 is a vector of parameters that may evolve over time. Inclusion of
the parameterθt−1 is a crucial aspect of the adaptive learning approach, as we
will discuss. However, the framework so far is broad enough to include static
expectations, adaptive expectations, and rational expectations as special cases
with appropriate fixed values ofθ .19

Under the statistical approach to learning, the forecast rule9(Xt, θ) is
based on an econometric model specification, i.e., on a perceived law of mo-

17We briefly discuss the eductive approach in Section 15.4 of Chapter 15. There are close links
between the stability analyses of eductive and adaptive learning. For a forceful presentation of the
eductive viewpoint see Guesnerie (1999).

18An example of fully rational learning is Townsend (1978). See the section on the discussion of
the literature in Chapter 2 for further references.

19Under rational expectationsyet = 9(Xt ) ≡ E(yt | Xt ), the mathematical conditional expec-
tation of yt given Xt , providedE(yt | It ) = E(yt | Xt ), whereIt = {Xt,Xt−1, . . . ,X0} is the
information set at timet . This will often hold ifXt is chosen appropriately.
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tion for the variables of interest, and the vectorθ represents unknown param-
eters which must be estimated statistically in order to implement the forecast
rule. As an example, in the cobweb model the forecast rule (1.5) foryet = pet is
a linear function of the observables, whereXt includes the variables 1 andwt
andθt−1 includes the parametersat−1 andbt−1. The forecasting framework is
completed by specifying a rule for estimatingθ and updating the estimates over
time as data is accumulated. We will assume that this takes a recursive form
θt = G(t, θt−1,Xt ). It is convenient to write this in the equivalent form20

θt = θt−1+ γtQ(t, θt−1,Xt ),

whereγt is a given deterministic “gain” sequence which governs how responsive
estimate revisions are to new data.21 Recursive estimators are sometimes called
“on-line,” in contrast to “off-line” estimators in whichθt could depend on the full
historyX1, . . .Xt . However, as we will see, many standard statistical estimators
such as least squares can be rewritten in recursive form. A simple special case
is that the sample meanat = t−1∑t

i=1pi , for t = 1,2,3, . . . , can be written
in recursive form asat = at−1+ t−1(pt − at−1), wherea1 = p1. Thus, while
not completely general, our formulation remains quite general. The recursive
version of least squares estimation will be developed in Chapter 2.

The system as a whole is specified once the dynamic process governing
the state variablesXt is described. Since the model is self-referential, the de-
pendence of key variables on expectations, manifest in the cobweb model via
equations (1.4) and (1.5), will be reflected either in the specification of the pro-
cess followed byXt or in the specification of the updating equationQ(·) for the
parameter estimatesθt , or both. This self-referential aspect is what prevents us
from analyzing the resulting stochastic dynamic systems using standard econo-
metric tools.

We have thus arrived at a stochastic dynamic system in which economic
variables depend through the forecasts of agents on the agents’ estimates of
key parameters and those parameters are updated over time in response to the
evolution of the variables themselves. Analyzing the evolution of this stochas-
tic dynamic system over time is the heart of the adaptive learning approach to
expectations formation and the subject of this book.

20As we will see in the next chapter, in order to make possible a recursive formulation,θt must
often include auxiliary parameters in addition to the parameters of interest.

21The importance of a recursive formulation for obtaining general adaptive learning results was
stressed in Marcet and Sargent (1989c).
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1.7 Overview of the Book

In the remainder of Part I we describe the adaptive learning approach to expecta-
tions formation in some detail and illustrate it with numerous examples from the
recent macroeconomic literature. The analysis in Part I is presented in simplified
terms to show the key features and applicability of the approach. The level of
exposition is aimed at graduate students and other economists with some famil-
iarity of standard macroeconomic theory. In other parts of the book the style of
analysis is rigorous and requires familiarity with techniques presented in Part II.
However, Chapters 8, 11, 13, and 15 should be by and large accessible after
reading Part I.

Chapter 2 spells out the details of the approach in the context of the cob-
web model with agents updating their forecast parameters using recursive least
squares. This model, in which there is a unique rational expectations equilibrium
(REE), is particularly convenient for introducing the technical framework. We
show explicitly how to represent the model under learning as a stochastic recur-
sive algorithm (SRA), how to approximate the system with an associated ordi-
nary differential equation (ODE), and how the asymptotic stability of the REE
under learning hinges on a stability condition called “expectational stability” or
“E-stability.” The discussion of the techniques in this chapter is introductory,
emphasizing the heuristic aspects. Chapter 3 shows how some simple variations
can lead to interesting further results. In particular, we explore the implications
of modifying or misspecifying the recursive least squares learning rule. In that
chapter we also discuss a simple form of adaptive learning which can be used
in nonstochastic models. The standard coordination failure model is used as an
illustration of learning in a nonstochastic context.

Chapter 4, the last chapter of Part I, shows how to use the techniques to
study adaptive learning in a wide range of frequently encountered models. The
examples include the standard overlapping generations model, the Ramsey opti-
mal growth model, simple linear stochastic macro models, the Diamond growth
model, and a model with increasing social returns. We give examples of conver-
gence to REEs, and illustrate the possibility of REEs which are not stable under
adaptive learning. In this chapter we also provide an illustration of convergence
to a “sunspot” solution, i.e., to a solution which depends on extraneous variables
because agents learn to coordinate their expectations on these variables.

Part II provides a systematic treatment of the technical tools required for
the analysis of SRAs. Chapter 5 provides a summary of standard results on eco-
nomic dynamics, with an emphasis on stability results. Topics include difference
and differential equations, both deterministic and stochastic, as well as a num-
ber of specialized results which will be needed. Chapter 6 presents a formal
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statement of the key technical results on the stability of SRAs which makes pos-
sible the systematic study of adaptive learning in macroeconomic models with
expectations. Separate local stability, global stability, and instability results are
given. As an illustration we obtain the stability conditions for convergence to
the unique REE in the multivariate cobweb model. Chapter 7 presents some
additional technical results, including speed of convergence and asymptotic ap-
proximations for constant-gain algorithms.

In Parts III and IV we apply the techniques systematically to linear and non-
linear economic models. In these parts we continue to focus on the issue of the
conditions under which adaptive learning converges to REE. A major emphasis
of these two parts is the possibility of multiple equilibria. As we have already
stressed, macroeconomic models in which the state of the economy depends on
expectations have the potential for “self-fulfilling prophecies,” taking the form
of multiple REEs. Local stability under learning provides a natural selection
principle for assessing these equilibria.

Part III is a systematic treatment of linear models. Chapters 8 and 9 ex-
amine univariate linear models, covering many of the standard workhorses of
macroeconomics. Part III begins with a full treatment of several special cases in
which the full set of REEs can be readily listed. The solutions take the form of
one or more minimal state variable (MSV) solutions and one or more continua
of ARMA solutions, possibly depending on “sunspot” variables. In some cases
there is a unique REE which is nonexplosive,but examples with multiple station-
ary solutions do arise. In looking at the local stability of these solutions under
least squares learning, we emphasize the role of the E-stability conditions, and
we distinguish “weak E-stability conditions,” which govern local stability when
the REE is correctly specified, and “strong E-stability” conditions, which are
relevant when the perceived law of motion estimated by the agents overparam-
eterizes the REE solution of interest. We show how to use the tools of Part II
to prove that these conditions govern local stability and instability, under least
squares learning, for certain classes of solutions, and we provide supporting nu-
merical simulations for other cases where formal proofs are not available.

Economic examples covered in Chapters 8 and 9 include the Sargent–
Wallace “ad hoc” model, Taylor’s real balance and overlapping contracts mod-
els, the Cagan inflation model, asset price models, investment under uncertainty,
Muth’s inventory model, and a version of Dornbusch’s exchange rate model.
Recent dynamic general equilibrium models, such as the Real Business Cy-
cle (RBC) model, are inherently multivariate, as are conventional large-scale
macroeconometric models. Although the RBC model is nonlinear, a good ap-
proximation is often given by linearized versions. In Chapter 10 we take up mul-
tivariate linear expectations models. We show how our techniques to assess the
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local stability of REE under least squares learning can be extended in a straight-
forward way to the multivariate setting and we present the E-stability conditions
for REE in multivariate linear models. This chapter discusses both “regular”
cases, for which there is a unique stationary REE, and “irregular cases” with
multiple stationary REE. Economic examples include an IS-LM-new Phillips
curve model, the RBC model, and the Farmer–Guo irregular model.

Part IV turns to nonlinear models. From the viewpoint of formal macroe-
conomic theory these models give rise to the possibility of multiple steady-state
REEs, as well as (in nonstochastic models) perfect-foresight cycles and stochas-
tic equilibria which depend on an extraneous variable, a “sunspot.” The possibil-
ity of multiple steady-state REEs in nonstochastic models is considered in Part I
but is more systematically discussed in Chapter 11. This chapter also considers
solutions to nonlinear models subject to white noise intrinsic shocks, for exam-
ple due to random technology, preference, or policy shocks, and we show the
existence of “noisy steady states” for nonlinear models with small white noise
shocks. We obtain the E-stability conditions and show that they govern local
stability under adaptive learning for steady states and noisy steady states. In ad-
dition to the overlapping generations (OG) models, with and without stochastic
shocks, our examples include the increasing social returns model, the hyperin-
flation (seignorage) model, and the Evans–Honkapohja–Romermodel of growth
cycles.

Chapter 12 continues the systematic treatment of nonlinear models. Perfect-
foresight cycles can arise in nonlinear models such as the OG model.22 Chap-
ter 12 shows the possibility of “noisy cycles” in nonlinear models with white
noise shocks. We then obtain the E-stability conditions for (perfect-foresight or
noisy) cycles and show that these govern the local stability of these cycles under
adaptive learning. We derive both weak E-stability conditions, in which the per-
ceived law of motion held by the agents correctly specifies the order of the cycle
under consideration, and strong E-stability conditions, which are required for
stability when the agents overparameterize the order of the cycle. Sunspot equi-
libria were originally discovered to exist in nonlinear models, taking the form
of Markov chains.23 Chapter 12 also obtains corresponding weak and strong
E-stability conditions and shows that these govern the local stability of station-
ary sunspot equilibria (and noisy stationary sunspot equilibria) under adaptive

22See Grandmont (1985).
23See Shell (1977), Azariadis (1981), Azariadis and Guesnerie (1982), and Cass and Shell

(1983). The possibility of convergence to sunspots under adaptive learning was shown by Wood-
ford (1990).
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learning. Particular attention is paid to the E-stability conditions for Markov
sunspot solutions which are close to REE cycles or pairs of steady states.

Part V returns to general issues in adaptive learning. We have been modeling
the economic agents as making forecasts in the same way as econometricians.
This is a weakening of the rational expectations assumption, but one which
would appear reasonable since, after all, economists themselves use economet-
rics as the principal tool for forecasting. As with all bounded rationality assump-
tions, one can consider further strengthening or weakening of the degree of ratio-
nality. The emphasis of much of the book is on the possibility that econometric
learning will asymptotically converge to fully rational expectations. Indeed, we
have advocated local stability under adaptive learning as a selection criterion
when multiple REEs exist. Chapters 13 and 14 consider the possibility that nat-
ural econometric learning rules may fail to converge fully to REEs even in the
limit.

In Chapter 13 we consider the implications of agents using a misspecified
model. When the perceived law of motion estimated by the agents does not nest
the REE under consideration, convergence of learning to that REE is, of course,
impossible. This does not, however, preclude convergence of the estimators. We
give several examples in which underparameterized learning converges to a re-
stricted perceptions equilibrium under least squares learning. This equilibrium,
though not rational, may be optimal given the restricted class of perceived laws
of motion entertained by the forecasters. In the cobweb model the stability con-
dition is unaffected, but in other examples misspecification can affect the sta-
bility condition as well as the asymptotic point of convergence. This chapter
and the next also discuss the model of misspecified learning by monetary policy
makers recently set forth in Sargent (1999).

If agents have a misspecified model, they may, however, be aware of the
possible misspecification and make allowances for this in their learning rule.
One way this can be done is to choose the “gain” sequence, which measures
the sensitivity of estimates to new data points, so that it is bounded above zero
asymptotically. This is in contrast to standard statistical procedures, like least
squares, in which the gain shrinks to zero over time as more data is accumu-
lated. Such nondecreasing or constant-gain estimators have the disadvantage in
correctly specified models that estimators fluctuate randomly in the limit, pre-
cluding convergence to full rationality. But they have the advantage, in some
kinds of misspecified models, of being able to track an economic structure which
is evolving in some unknown way. Chapter 14 discusses the implications of
constant-gain learning in the context of the cobweb model, the increasing social
returns model, and Sargent’s inflation model. In some cases, dramatic and new
persistent learning dynamics can arise because of the incomplete learning.
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Chapter 15 contains a discussion of extensions, alternatives, and new ap-
proaches to adaptive learning that have been recently employed. Genetic algo-
rithms, classifier systems, and neural networks are alternative forecasting meth-
ods available from the computational intelligence literature. We also discuss
eductive approaches, as well as extensions which permit agents to use nonpara-
metric methods or to weigh the costs and benefits of improving forecasts. The
chapter ends with a discussion of experimental work and recent empirical appli-
cations.

Chapter 16 concludes the book with a perspective on what has been
achieved and points out some issues for further research.


